

# Python Programming Data Frame- Linear Regression



Parcours Progis
Etudes, Medias, communication, Marketing
Bahareh Afshinpour.
21.11.2024





# Seaborn.countplot()

- <u>-Seaborn</u> is an amazing visualization library for statistical graphics plotting in Python.
- -Seaborn.countplot() method is used to Show the **counts of observations** in each categorical bin using bars.

```
import seaborn as sns  # Provides a high level interface
ax = sns.countplot(x='Response',data = data)
plt.ylabel('Total number of Response')
annot_plot(ax, 0.08,1)
plt.show()
```

## Groupby

# The groupby() method allows you to group your data and execute functions on these groups.

```
Response=data.groupby('Response')['Customer'].count()
Response
```

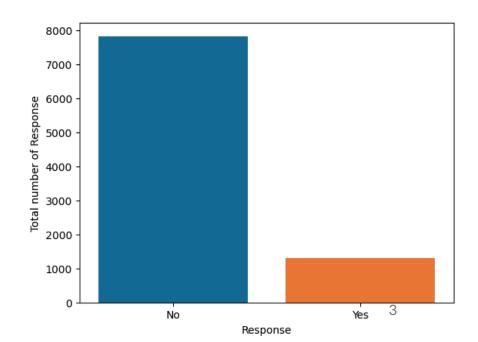
#### Response

Yes

No 7826

1308

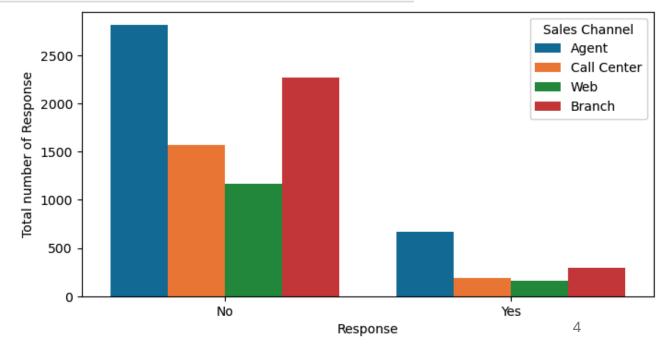
Name: Customer, dtype: int64



#### The ratio of sales channel to response

```
plt.figure(figsize=(8,4))
ax = sns.countplot(x='Response', hue = 'Sales Channel' ,data = data)
plt.ylabel('Total number of Response')
annot_plot(ax, 0.08,1)
plt.show()
```

More than half of the engaged customers to respond are from « agent »



#### More about Sales Channel to response

```
channel_vs_mstatus=data[data['Response']=='Yes'].groupby(['Sales Channel'])['Customer'].count()
channel vs mstatus
Sales Channel
Agent
                666
                                                600
Branch
               294
Call Center
                192
                                                500
Web
               156
Name: Customer, dtype: int64
                                                400
ax = (channel_vs_mstatus).plot(
kind='bar',
                                                300
figsize=(10, 7),
grid=True
                                                200
ax.set_ylabel('Count')
                                                100
plt.show()
```

Sales Channel

## Select\_dtypes (1)

- Here, the goal is to split the data into two parts, **numeric** and **categorical**.
- continous\_var\_data = data.select\_dtypes(include=['int64','float'])

```
num=data.select_dtypes(include='number')
num.head()
```

|   | Customer Lifetime<br>Value | Income | Monthly Premium<br>Auto | Months Since Last<br>Claim |
|---|----------------------------|--------|-------------------------|----------------------------|
| 0 | 2763.519279                | 56274  | 69                      | 32                         |
| 1 | 6979.535903                | 0      | 94                      | 13                         |
| 2 | 12887.431650               | 48767  | 108                     | 18                         |
| 3 | 7645.861827                | 0      | 106                     | 18                         |
| 4 | 2813.692575                | 43836  | 73                      | 12                         |

cate=data.select\_dtypes(include='object')
cate.head()

|   | Customer | State      | Response | Coverage | Education | Effective<br>To Date | Empl |
|---|----------|------------|----------|----------|-----------|----------------------|------|
| 0 | BU79786  | Washington | No       | Basic    | Bachelor  | 2/24/11              |      |
| 1 | QZ44356  | Arizona    | No       | Extended | Bachelor  | 1/31/11              |      |

# Select\_dtypes (2)

num=data.select\_dtypes(include='number')
num.head()

```
num=data.select_dtypes(include='number')
num.head()
```

|   | Customer Lifetime<br>Value | Income | Monthly Premium<br>Auto | Months Since Last<br>Claim | Months Since Policy<br>Inception |
|---|----------------------------|--------|-------------------------|----------------------------|----------------------------------|
| 0 | 2763.519279                | 56274  | 69                      | 32                         | 5                                |
| 1 | 6979.535903                | 0      | 94                      | 13                         | 42                               |
| 2 | 12887.431650               | 48767  | 108                     | 18                         | 38                               |
| 3 | 7645.861827                | 0      | 106                     | 18                         | 65                               |
| 4 | 2813.692575                | 43836  | 73                      | 12                         | 44                               |

#### Split the data into Train and Test datasets

- The train-test split is a technique for evaluating the performance of a machine learning algorithm.
- It can be used for classification or regression problems and can be used for any supervised learning algorithm.
- Train Dataset: Used to fit the machine learning model.
- Test Dataset: Used to evaluate the fit machine learning model.

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)
# split again, and we should see the same split
X train, X test, y train, y test = train test split(X, y, test size=0.33, random state=1)
```

#### **Example**

```
>>> X
array([[ 1, 2],
       [3, 4],
       [7, 8],
       [ 9, 10],
       [11, 12],
       [13, 14],
       [15, 16],
       [17, 18],
       [19, 20],
       [21, 22],
       [23, 24]])
>>> y
array([0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0])
```

You probably got different results from what you see here. This is because dataset splitting is <u>random</u> by default.

```
>>> x_train, x_test, y_train, y_test = train_test_split(x, y)
>>> x_train
array([[15, 16],
       [21, 22],
       [11, 12],
       [17, 18],
       [13, 14],
       [ 9, 10],
       [1, 2],
      [3, 4],
       [19, 20]])
>>> x_test
array([[ 5, 6],
       [7, 8],
       [23, 24]])
>>> y_train
array([1, 1, 0, 1, 0, 1, 0, 1, 0])
>>> y_test
array([1, 0, 0])
```

#### Split the data into Train and Test datasets

```
from sklearn.model_selection import train_test_split
v = continous var data['Customer Lifetime Value']
X = continous var data.drop(columns=['Customer Lifetime Value'])
# Split the data
X train, X test, y train, y test = train test split(X, y, test size=0.2, random state=42)
# Check the shapes to confirm
print(f"Shape of X_train: {X_train.shape}")
print(f"Shape of X_test: {X_test.shape}")
print(f"Shape of y_train: {y_train.shape}")
print(f"Shape of y_test: {y_test.shape}")
Shape of X train: (7307, 7)
Shape of X test: (1827, 7)
Shape of y_train: (7307,)
Shape of y test: (1827,)
```

shape of X\_test (1827, 7)

Average of CLV in training data 8022.789393969208

Average of CLV in testing data 7933.554568581828

#### Split the data into Train and Test datasets

Every time we change the random state, different observation gets selected into the training and testing.

```
continous_var_data=data.select_dtypes(include='number')
from sklearn.model_selection import train_test_split
y = continous_var_data['Customer Lifetime Value']
X = continous var data.drop(columns=['Customer Lifetime Value'])
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
print("shape of X_train ",X_train.shape)
print("shape of X_test ",X_test.shape)
print("Average of CLV in training data ",y_train.mean())
print("Average of CLV in testing data ",y_test.mean())
shape of X_train (7307, 7)
```

If the averaging value of the dependent variable differs significantly between training and testing, the model does not have a fair opportunity of learning what it can from the data.

#### Fitting the simple regressionn model

```
from sklearn.linear_model import LinearRegression
reg = LinearRegression().fit(X_train, y_train)
```

```
from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_train, y_train)
```

```
reg.intercept_
```

193,6434424279978

reg.coef\_

# **Linear Regression**

```
from sklearn.linear_model import LinearRegression
reg = LinearRegression().fit(X_train, y_train)
acc_log_train = round(reg.score(X_train, y_train)*100,2)
acc_log_test = round(reg.score(X_test, y_test)*100,2)
print("Training Accuracy:%{}".format(acc_log_train))
print("Testing Accuracy:%{}".format(acc_log_test))
```

Training Accuracy:%16.2 Testing Accuracy:%15.3

It is not good

#### **END**