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Seaborn.countplot()

-Seaborn is an amazing visualization library for statistical graphics plotting in Python.

-Seaborn.countplot() method is used to Show the counts of observations in each
categorical bin using bars.

import seaborn as sns # Provides a high level interface
ax = sns.countplot(x="'Response',data = data)

plt.ylabel{'Total number of Response')

annot_plot(ax, ©.88,1)

plt.show()


https://www.geeksforgeeks.org/introduction-to-seaborn-python/
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Groupby

The groupby() method allows you to group your data and execute

functions on these groups.

Response=data.groupby('Response') ["'Customer'].count()
Response

Response
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Name: Customer, dtype: 1intéd
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The ratio of sales channel to response

plt.figure(figsize=(8,4))

ax = sns.countplot(x='Response’',hue = 'Sales Channel' ,data = data)
plt.ylabel('Total number of Response')

annot_plot(ax, ©.88,1)

plt.show()
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More about Sales Channel to response

channel_vs_mstatus=data[data['Response’]|=="'Yes'].groupby(['Sales Channel'])['Customer’].count()
channel_vs_mstatus

Sales Channel

Agent 66b 600 -
Branch 294
Call Center 192 co0 |
Web 156

Mame: Customer, dtype: intod

400 +

Count

ax = (channel_vs_mstatus).plot(

kind="bar', 300
figsize=(10, 7),

grid=True 200 -
)

ax.set_ylabel('Count') 100

plt.show()
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Select_dtypes (1)

num. head()

. . . Customer Lifetime Monthly Premium  Months Since Last
* Here, the goalis to split the data into two Value '"COMe T Auto Claim
parts, numeric and categorical. ° 203519279 8627 °e 32
1 6979.535903 0 94 13
. 2 12887.431650 48787 108 18
* continous_var_data = : soicoonz o ”
data.select_dtypes(include=['int64float’] * 2813692575 43836 73 12
) cate=data.select_dtypes{include="'object')

cate. head()

\ Effective

Customer State Response Coverage Education To Date Empl
0 BU79786 Washington Mo Basic Bachelor 2/24M
1 QZ44356 Arizona Mo Extended Bachelor 1/31/11
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Select_dtypes (2)

num=data.select_dtypes(include='number’)
num.head()

num=data.select_dtypes(include="number")
num. head ()

Customer Lifetime Monthly Premium  Months Since Last Months Since Policy
Income ; :

Value Auto Claim Inception

0 2763519279 56274 69 32 o
1 6979.635903 0 94 13 42
2 12887.431650 48767 108 18 38
3 7645.861827 0 106 18 65
4 2813.692575 43836 /3 12 44
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Split the data into Train and Test datasets

* The train-test split is a technigue for evaluating the performance of a machine
learning algorithm.

* [t can be used for classification or regression problems and can be used for any
supervised learning algorithm.

« Train Dataset: Used to fit the machine learning model.
» Test Dataset: Used to evaluate the fit machine learning model.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

# split again, and we should see the same split
X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.33, random_state=1)
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Example
= =>> x_train, x_test, y_train, y_test = train_test_split(x, y)
array([[ 1, 2], >>> x_train
[ 3, 4] array([[15, 16],
— (21, 221,
a_-{ ? :}’ [11, 121,
[ 9’ 1-a]j [17, 18],
' ! [13, 141,
[11, 121, [ 9, 10],
[13, 14], [ 1, 21,
[15, 16], [ 3, 4],
[17, 181, [19, 2@6]])
[19, 2@], >>> x_test
[21, 221, array([[ 5, 8],
[23, 24]1]) [ 7, 8],
>>> Y [23, 24]1])
array([@, 1, 1, e, 1, @, @, 1, 1, @, 1, 0]) >>> y_train

array([1, 1, @, 1, 8, 1, @, 1, @])
=>> y_test

You probably got different results from what you array([1, @, 0])

see here. This is because dataset splitting
is random by default. 9


https://realpython.com/python-random/
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Split the data into Train and Test datasets

from sklearn.model_selection import train_test_split

y = continous_var_data['Customer Lifetime Value']

X = continous_var_data.drop{columns=['Customer Lifetime Value'])

# Split the data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=42)

# Check the shapes to confirm
print(f"Shape of X_train: {X_train.shape}")
print(f"Shape of X_test: {X_test.shapel}")
print(f"Shape of y_train: {y_train.shape}")
print(f"Shape of y_test: {y_test.shapel}")

Shape of X_train: (7307, 7)
Shape of X_test: (1827, 7)
Shape of y_train: (7387,)
Shape of y_test: (1827,)
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Split the data into Train and Test datasets

Every time we change the random state, different observation gets
selected into the training and testing.

continous_var_data=data.select_dtypes(include="number"')

from sklearn.model_selection import train_test_split
y = continous_var_data['Customer Lifetime Value']

X = continous_var_data.drop(columns=['Customer Lifetime Value']}
# Split the data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=42)

print("shape of X_train ",X_train.shape)

print("shape of X_test ",X_test.shape)

print("Average of CLV in training data ",y_train.mean())
print("Average of CLV in testing data ",y_test.mean()})

shape of X_train (7307, 7) . . .
shape of X_test (1827, 7) If the averaging value of the dependent variable differs
Average of CLV in training data 8022.789393969208 gignjficantly between training and testing, the model does not
Average of CLV in testing data 7933.554568581828 . . . .
have a fair opportunity of learning what it can from tl'1|1e data.
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Fitting the simple regressionn model

from sklearn.linear_model import LinearRegression
reg = LinearRegression().fit(X_train, y_train)

from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_train, y_train)

reg.intercept_
Y=a*x+b
Y=coef*x+intercept

193.6434424279978

reg.coef_

12



PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Linear Regression

from sklearn.linear_model impert LinearRegression

reg = LinearRegression().fit(X_train, y_train)
acc_log_train = round(reg.score(X_train, y_train)*100,2)
acc_log_test = round(reg.score(X_test, y_test)x108,2)
print("Training Accuracy:%{}".format({acc_leg_train))
print("Testing Accuracy:%{}".format{acc_log_test))

Tralning Accuracy:%1l6..2
Testing Accuracy:%15.3

Itis not good

13
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