Python Programmlng

Data Frame- Linear Regression

Parcours Progis
Etudes, Medias, communication, Marketing

Bahareh Afshinpour.

21.11.2024
AR %

UC/\ Sciences Po

Université

Yo
Grenoble Alpes G renOble?JGIA\

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Seaborn.countplot()

-Seaborn is an amazing visualization library for statistical graphics plotting in Python.

-Seaborn.countplot() method is used to Show the counts of observations in each
categorical bin using bars.

import seaborn as sns # Provides a high level interface
ax = sns.countplot(x="'Response',data = data)

plt.ylabel{'Total number of Response')

annot_plot(ax, ©.88,1)

plt.show()

https://www.geeksforgeeks.org/introduction-to-seaborn-python/

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Groupby

The groupby() method allows you to group your data and execute

functions on these groups.

Response=data.groupby('Response') ["'Customer'].count()
Response

Response

Mo 7826

Yes 1388

Name: Customer, dtype: 1intéd

8000

7000 A

[=)]
[=]
o
o

5]
=]
o
=]

Total number of Response
W £
=1 o
=1 =1
=1 =]

2000

1000 ~

Response

ETUDES, MEDIAS, COMMUNICATION, MARKETING

The ratio of sales channel to response

plt.figure(figsize=(8,4))

ax = sns.countplot(x='Response’',hue = 'Sales Channel' ,data = data)
plt.ylabel('Total number of Response')

annot_plot(ax, ©.88,1)

plt.show()

Sales Channel
N Agent
B Call Center
m Web
I Branch

2500

More than half of the engaged
customers to respond are from
«agent »

Pl
=]
=
=

1500 A

1000 ~

Total number of Response

500 +

Response 4

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

More about Sales Channel to response

channel_vs_mstatus=data[data['Response’]|=="'Yes'].groupby(['Sales Channel'])['Customer’].count()
channel_vs_mstatus

Sales Channel

Agent 66b 600 -
Branch 294
Call Center 192 co0 |
Web 156

Mame: Customer, dtype: intod

400 +

Count

ax = (channel_vs_mstatus).plot(

kind="bar', 300
figsize=(10, 7),

grid=True 200 -
)

ax.set_ylabel('Count') 100

plt.show()

Agent
Branch

Call Center

Sales Channel

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Select_dtypes (1)

num. head()

. . . Customer Lifetime Monthly Premium Months Since Last
* Here, the goalis to split the data into two Value '"COMe T Auto Claim
parts, numeric and categorical. ° 203519279 8627 °e 32
1 6979.535903 0 94 13
. 2 12887.431650 48787 108 18
* continous_var_data = : soicoonz o ”
data.select_dtypes(include=['int64float’] * 2813692575 43836 73 12
) cate=data.select_dtypes{include="'object')

cate. head()

\ Effective

Customer State Response Coverage Education To Date Empl
0 BU79786 Washington Mo Basic Bachelor 2/24M
1 QZ44356 Arizona Mo Extended Bachelor 1/31/11

6

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Select_dtypes (2)

num=data.select_dtypes(include='number’)
num.head()

num=data.select_dtypes(include="number")
num. head ()

Customer Lifetime Monthly Premium Months Since Last Months Since Policy
Income ; :

Value Auto Claim Inception

0 2763519279 56274 69 32 o
1 6979.635903 0 94 13 42
2 12887.431650 48767 108 18 38
3 7645.861827 0 106 18 65
4 2813.692575 43836 /3 12 44

PROGIS
ETUDES, MEDIAS, COMMUNICATION, MARKETING

Split the data into Train and Test datasets

* The train-test split is a technigue for evaluating the performance of a machine
learning algorithm.

* [t can be used for classification or regression problems and can be used for any
supervised learning algorithm.

« Train Dataset: Used to fit the machine learning model.
» Test Dataset: Used to evaluate the fit machine learning model.

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

split again, and we should see the same split
X_train, X_test, y_train, y_test =train_test_split(X, y, test_size=0.33, random_state=1)

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Example
= =>> x_train, x_test, y_train, y_test = train_test_split(x, y)
array([[1, 2], >>> x_train
[3, 4] array([[15, 16],
— (21, 221,
a_-{ ? :}’ [11, 121,
[9’ 1-a]j [17, 18],
' ! [13, 141,
[11, 121, [9, 10],
[13, 14], [1, 21,
[15, 16], [3, 4],
[17, 181, [19, 2@6]])
[19, 2@], >>> x_test
[21, 221, array([[5, 8],
[23, 24]1]) [7, 8],
>>> Y [23, 24]1])
array([@, 1, 1, e, 1, @, @, 1, 1, @, 1, 0]) >>> y_train

array([1, 1, @, 1, 8, 1, @, 1, @])
=>> y_test

You probably got different results from what you array([1, @, 0])

see here. This is because dataset splitting
is random by default. 9

https://realpython.com/python-random/

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Split the data into Train and Test datasets

from sklearn.model_selection import train_test_split

y = continous_var_data['Customer Lifetime Value']

X = continous_var_data.drop{columns=['Customer Lifetime Value'])

Split the data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=42)

Check the shapes to confirm
print(f"Shape of X_train: {X_train.shape}")
print(f"Shape of X_test: {X_test.shapel}")
print(f"Shape of y_train: {y_train.shape}")
print(f"Shape of y_test: {y_test.shapel}")

Shape of X_train: (7307, 7)
Shape of X_test: (1827, 7)
Shape of y_train: (7387,)
Shape of y_test: (1827,)

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Split the data into Train and Test datasets

Every time we change the random state, different observation gets
selected into the training and testing.

continous_var_data=data.select_dtypes(include="number"')

from sklearn.model_selection import train_test_split
y = continous_var_data['Customer Lifetime Value']

X = continous_var_data.drop(columns=['Customer Lifetime Value']}
Split the data

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=8.2, random_state=42)

print("shape of X_train ",X_train.shape)

print("shape of X_test ",X_test.shape)

print("Average of CLV in training data ",y_train.mean())
print("Average of CLV in testing data ",y_test.mean()})

shape of X_train (7307, 7) . . .
shape of X_test (1827, 7) If the averaging value of the dependent variable differs
Average of CLV in training data 8022.789393969208 gignjficantly between training and testing, the model does not
Average of CLV in testing data 7933.554568581828
have a fair opportunity of learning what it can from tl'1|1e data.

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Fitting the simple regressionn model

from sklearn.linear_model import LinearRegression
reg = LinearRegression().fit(X_train, y_train)

from sklearn.linear_model import LinearRegression
reg = LinearRegression()
reg.fit(X_train, y_train)

reg.intercept_
Y=a*x+b
Y=coef*x+intercept

193.6434424279978

reg.coef_

12

PROGIS

ETUDES, MEDIAS, COMMUNICATION, MARKETING

Linear Regression

from sklearn.linear_model impert LinearRegression

reg = LinearRegression().fit(X_train, y_train)
acc_log_train = round(reg.score(X_train, y_train)*100,2)
acc_log_test = round(reg.score(X_test, y_test)x108,2)
print("Training Accuracy:%{}".format({acc_leg_train))
print("Testing Accuracy:%{}".format{acc_log_test))

Tralning Accuracy:%1l6..2
Testing Accuracy:%15.3

Itis not good

13

END

	Slide 1
	Slide 2: Seaborn.countplot()
	Slide 3: Groupby
	Slide 4: The ratio of sales channel to response
	Slide 5: More about Sales Channel to response
	Slide 6: Select_dtypes (1)
	Slide 7
	Slide 8: Split the data into Train and Test datasets
	Slide 9: Example
	Slide 10
	Slide 11
	Slide 12: Fitting the simple regressionn model
	Slide 13: Linear Regression
	Slide 14

